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Abstract

Some main aspects of the thermodynamics of vapour–liquid equilibrium are considered together with a brief review of classical
thermodynamic methods. The general thermodynamic–topological singularities of the structure of phase diagrams are discussed, as are the
possible use of differential and integral thermodynamic relationships for the analysis and verification of phase equilibria. Special attention
is given to results from the work of Russian researchers. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The development of methods to calculate vapour–liquid
equilibria is determined mainly by practical demands.
Among the latter, calculating engineering separation pro-
cesses (distillation, rectification, etc.) is the key problem.
Certainly, the practical tasks are always related to the ne-
cessity of finding specific solutions, which is not always
consistent with a rigorous approach based on fundamen-
tal research. The example of the theory of vapour–liquid
equilibrium can be taken to illustrate that finding empirical
regularities of a particular, narrow sense very often becomes
an alternative to the fundamental approach. Obviously, it
becomes very useful for practical purposes when, having
analysed the experimental data, a researcher generalises an
adequate empirical equation that can be used, in particu-
lar, to calculate vapour–liquid equilibrium parameters for
ternary systems from the data for the binary subsystems
even for a narrow class of compounds, e.g., for the systems
composed of homologues. Meanwhile, can this approach
be of any use for the development of fundamental theory?
Moreover, does it make any sense from the practical view-
point to forget about the capabilities of a universal and
rigorous approach and thus to invest money and spend time
to obtain particular results that can be useful in some cases
but of no use in others?
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The idea behind this paper is to remind its readers of
the capabilities of the thermodynamic approach, to point
out novel and remarkable results from vapour–liquid equi-
librium studies, and, above all, to provide for the develop-
ment of new calculation methods based on the assumptions
of fundamental research rather than specific, though useful,
correlations. We found it necessary also to refer specifically
to results obtained by Russian researchers and thus not gen-
erally known to the English-speaking readership.

A sequential account of thermodynamic methods as well
as all existing approaches to the investigation of heteroge-
neous equilibria is not within the scope of this paper. Partic-
ular attention is paid to specific problems of interest for the
proper development of thermodynamic methods of research.

2. Principles of equilibrium and stability criteria
for heterogeneous systems

A universal approach to the study and calculation of phase
equilibria is in minimising the energy of the heterogeneous
system (e.g., the Gibbs energy,G). In fact, the essence of
this method is the direct use of the Gibbs relationships [1]
expressing the principles of equilibrium. Thus for the inter-
nal energy we have

(�U)S,V,m1,m2,... ,mn ≥ 0, (1)

where S is the entropy,V the volume,mi the amount of
the substancei (e.g., the number of moles). The principles
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Nomenclature

A chemical affinity (J mol−1)
C heat capacity (J mol−1 K−1)
f fugacity of a component (–)
f degrees of freedom in the phase rule (–)
g molar Gibbs energy or function (J mol−1)
K volatility or K-value (–)
L partial molar heat of vaporisation of a

component (J mol−1)
n number of components (–)
n number of components in the phase rule (–)
p partial pressure of component (Pa)
P pressure (Pa)
Q differential molar heat for a phase

transition (J mol−1)
r number of phases (–)
r number of phases in the phase rule (–)
R universal gas constant (J mol−1 K−1)
R species taking part in a chemical reaction (–)
s molar entropy (J mol−1 K−1)
S entropy (J K−1)
T thermodynamic temperature (K)
u molar internal energy (J mol−1)
U internal energy (J)
v molar volume (m3 mol−1)
V volume (m3)
x mole fraction of a component (–)
x mole fraction of a component in liquid

phase, Eq. (71) (–)
X generalised form of intensive

thermodynamic property (–)
y mole fraction of a component in vapour

phase, Eq. (71) (–)
Y generalised form of extensive

thermodynamic property (–)
Z generalised thermodynamic property (–)

Greek letters
α composition parameter defined in Eq. (38) (–)
α relative volatility (–)
α, β labels denoting ends of a tie-line (–)
γ activity coefficient of a component (–)
µ chemical potential of a component (J mol−1)
ν stoichiometric number or coefficient for a

reacting component (–)

Indices
Az relates to an azeotrope (–)
i, j, k indicate specific components in a mixture (–)

Subscripts
i component in a system (or mixture) (–)
P at constant pressure (–)
V at constant volume (–)
1, 2, n components in a system (or mixture) (–)

Superscripts
E excess function (–)
r denotes a phase (–)
′ relates tokth component subsystem

(or sub-mixture) of ann-component
multicomponent system (or mixture) (–)

∗ limiting value, for example of
temperature (–)

of equilibrium lead to the following particular conditions
of phase equilibrium in a multicomponent multiphase
system:

T (1) = T (2) = · · · = T (r),
P (1) = P (2) = · · · = P (r),
µ
(1)
1 = µ(2)1 = · · · = µ(r)1 ,

µ
(1)
2 = µ(2)2 = · · · = µ(r)2 ,

...

µ
(1)
n = µ(2)n = · · · = µ(r)n ,

(2)

whereT is the absolute temperature,P the pressure,µi the
chemical potential of the componenti, n the number of com-
ponents,r the number of phases. The upper index refers to
a phase.

The entropy form of the principle of equilibrium is as
follows:

(�S)U,V,m1,m2,... ,mn ≤ 0. (3)

Thus “for the equilibrium of any isolated system it is neces-
sary and sufficient that in all possible variations of the state
of the system which do not alter its energy, the variation of
its entropy shall either vanish or be negative” [1]. It should
be noted that defining the principle of equilibrium in the
form of Eqs. (1) or (3) does not clarify the type of theU or
S extreme. In Eqs. (1) and (3),� means a first-order change
of state and corresponds to the virtual displacement in terms
of analytical mechanics, i.e., an imaginable change of state.
The inequality sign in Eqs. (1) and (3) determines condi-
tions for a sharp extreme that can occur in the case of unidi-
rectional shifts from the equilibrium state [2–4]. Therefore,
in the rigorous approach relationships (1) and (3) cannot be
interpreted as stability conditions for the equilibrium state. It
should be noted that most monographs on thermodynamics
present relations expressing principles of equilibrium as hav-
ing only the equality sign. The inequality sign is considered
to be of less importance for the solution of practical problems
and of significance only in specific cases. In particular, the
full form of the equilibrium principle (equality–inequality)
becomes useful in studies of chemical equilibrium [2]
and in the application of numerical methods to calculate
equilibria [5,6].
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The type of the extreme (maximum or minimum), as well
as the type of equilibrium (stable, metastable, neutral), de-
termines the criteria of thermodynamic stability:

(�S)U,V,m1,m2,... ,mn ≤ 0, (4)

(�U)S,V,m1,m2,... ,mn ≥ 0. (5)

According to Gibbs the symbol� in Eqs. (4) and (5) signi-
fies an infinitesimal, although definite, increment of a func-
tion. This means that when the function is expanded into
a Taylor series the infinitesimal members of higher orders
have to be taken into account. For both stable and metastable
equilibrium, the< sign stays in Eq. (4) (> in Eq. (5)). Gibbs
notes that in both cases� can mean not only an infinitesi-
mal increment, but also a finite difference inU andS values
due to a disturbance of the equilibrium state. The differ-
ence between the stable and metastable states means that for
the first one both Eqs. (4) and (5) are always valid for any
finite difference. In the second case of a metastable state at
least one finite displacement (perturbation) exists that does
not obey either of the conditions expressed by Eqs. (4) or
(5). Therefore, the analysis of stability contains in itself
the problem formulated by Gibbs himself (when he dis-
cussed one of the form of stability conditions—the inequal-
ity �U > T �S − P�V + �1m1 + · · · + �nmn): “it must be
possible to assign limits within which it shall hold true of
finite differences” [1]. To solve this problem one needs to
know the phase diagram of a system [2]; thus classical works
on the thermodynamic stability of equilibrium states con-
sider the general case combining both stability and metasta-
bility, which means using an infinitesimal� in Eqs. (4)
or (5).

The equality sign refers to a neutral, or indifferent,
equilibrium [1,7]. All other states differing from the equi-
librium ones (stable, metastable, and neutral) are non-
equilibrium states, Eqs. (4) and (5) are not valid for them,
the states corresponding to the unstable range of the phase
diagram.

In analysing the stability of phases one can express the
stability criteria using variables drawn from the fundamental
equations. The condition

�T�S −�P�V +
n∑
i=1

�µi�mi > 0 (6)

is the necessary and sufficient stability criterion of a phase
with regard to continuous changes of state. This inequality
leads to the condition of convexity for the surface of internal
energy,

�2U ≥ 0, (7)

widely used in the theoretical analysis of stability for specific
systems.

In this section, we restrict ourselves to setting out these
general and basic notes on deriving conditions of equilibrium
and stability in thermodynamics.

3. Differential equations describing phase equilibria

If under changes of state the phase equilibrium is main-
tained, the equation set of Eq. (2) has to be valid not only for
T, P, andµi but for the differentials of these parameters too:

dT (1) = dT (2) = · · · = dT (r),

dP (1) = dP (2) = · · · = dP (r),

dµ(1)i = dµ(2)i = · · · = dµ(r)i . (8)

In addition, the conditions of equilibrium shifts, i.e., the
Gibbs fundamental equations, must be valid for each phase

S(1) dT − V (1) dP +∑n
i=1m

(1)
i dµi = 0,

S(2) dT − V (2) dP +∑n
i=1m

(2)
i dµi = 0,

...

S(r) dT − V (r) dP +∑n
i=1m

(r)
i dµi = 0,

(9)

where S(k ), V(k ), and mi (k ) are entropy, volume, and the
number of moles of componenti in the phasek. The upper
indices are omitted for the intensive parametersT, P, andµi
since in the coexisting phases these quantities are equal, due
to Eqs. (2) and (8). Thus, Eq. (9) already includes conditions
imposed by Eq. (8). If the number of variablesT, P, µi
(n+ 2) in the set of Eq. (9) equals the number of equations
in Eq. (9) then the set has the null solution. This corresponds
to the Gibbs phase rule

f = n+ 2 − r, (10)

that defines such a state as invariant with the number of the
degrees of freedom,f, equal to 0. It should be noted that
it was the equation set of Eq. (9) that Gibbs himself used
in deriving the phase rule [1]. For the case wheref > 0
the variance of the set allows for the equilibrium state to
shift along the curves or surfaces (hyper-surfaces) of phase
coexistence. Two-phase equilibrium is the simplest case. The
solution of the equation set of Eq. (9) for two coexisting
phases can be set out as

(S(2) − S(1))dT − (V (2) − V (1))dP

+
n∑
i=1

(m
(2)
i −m(1)i )dµi = 0, (11)

or, replacing the number of moles by concentrations (mole
fractions),

(s(2) − s(1))dT − (v(2) − v(1))dP

+
n∑
i=1

(x
(2)
i − x(1)i )dµi = 0, (12)

wheres(r ) andv(r) are the molar quantities andxri are the
mole fractions of a substancei. The use of mole fractions is
not obligatory: one can equally use, e.g., weight fractions in
writing Eq. (12) with a corresponding change in the meaning
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of S, V andµi . The equation for the two-phase multicompo-
nent system in the forms of Eq. (11) or (12) includes parame-
ters that characterise changes in entropy, volume and masses
of the substances under transition from phase (1) to phase
(2). For example, when phase (2) is a vapour and phase (1) is
a liquid the differenceS(2)− S(1) is the entropy of evapora-
tion. For a single-component system the Clausius–Clapeyron
equation for a two-phase single-component system follows
directly from Eq. (12)

dP

dT
= s(2) − s(1)
v(2) − v(1) . (13)

We will return to this equation in the next section. Obviously,
Eqs. (11) and (12) are rather convenient for the theoretical
analysis of two-phase equilibria. In particular, the mathe-
matical treatment is significantly simplified by the fact that
all the independent variables in Eq. (11), i.e., the differen-
tiated quantitiesT, P andµi , are intensive parameters that
are equal in all coexisting phases. But Eqs. (11) and (12)
include as variables the chemical potentials of components
which are in general very difficult to both set and determine
in practice, i.e., by experiment.

One of the major problems that was solved in the ther-
modynamics of heterogeneous systems is the transforma-
tion of the equations describing the phase equilibrium into
the form having concentrations of components as variables
rather thanµi . The works of Van der Waals were the major
achievement in this field [8]. He derived his famous differ-
ential equation for a two-phase binary system:[
v(2) − v(1) − (x(2)1 − x(1)1 )

∂v

∂x1

]
dP

=
[
s(2) − s(1) − (x(2)1 − x(1)1 )

∂s

∂x1

]
dT

+∂
2g

∂x2
1

(x
(2)
1 − x(1)1 )dx1, (14)

where g is the molar Gibbs energy. The derivatives in
Eq. (14)

∂V

∂x1
,

∂S

∂x1
,

∂2g

∂x2
1

as well as the dx1 differential must refer to either phase
(1) or phase (2). Deriving Eq. (14) together with its anal-
ysis and practical applications are the central point of
the book [8] and present the basis of the thermodynamic
theory of two-phase binary systems. Meanwhile, one can
easily see that now the coefficients at dT and dP gain a
different sense. We will consider this in detail when dis-
cussing the generalised equation for the multicomponent
systems.

Eq. (14) was generalised for ternary systems by
Schreinemakers [9]. Unlike Van der Waals’ studies this
work was almost unrecognised. In 1948, Storonkin [10]
published his monograph “On the conditions of thermo-
dynamic equilibrium of heterogeneous systems”, where

he described the theory of phase equilibrium based on
the differential equations derived by himself and, first of
all, the differential equation describing the phase equi-
librium in two-phase multicomponent systems. He called
this equation the ‘generalised Van der Waals differential
equation’. His book appeared as a result of studies he had
already started at the end of the 1930s. This work, and the
subsequent studies of Storonkin and the school in thermo-
dynamics that he founded in Leningrad University, initiated
widespread fundamental research in the field of chemi-
cal thermodynamics and the theory of phase equilibria
in different types of physico-chemical systems, including
vapour–liquid equilibria. The significant factor determining
the success of this research was the rigorous approach based
on the works of Gibbs and Van der Waals. Meanwhile,
research at the Department in St. Petersburg (Leningrad)
University headed by Storonkin (formerly the Chair of
Solution Theory, now the Department of Chemical Thermo-
dynamics and Kinetics) genetically followed the works of
the St. Petersburg thermodynamic school presented by such
eminent scientists as Mendeleev, Konovalov, and Vrevskii.
In most aspects these works meant an upheaval in both
the methodology of thermodynamic studies of phase equi-
libria and the consciousness of physico-chemists in the
Soviet Union and other countries. Unfortunately, due to
the known barriers between the East and the West, the
majority of publications in this area seem to be unknown
to western researchers. Most of the works are published
in Russian, though; e.g., one of the first and principal
works of Storonkin [11] was published in German in 1940
when he was 23 years old. The full system of differen-
tial equations of Storonkin–Van der Waals for two-phase
multicomponent systems includes the two equations which
Storonkin called the generalised Van der Waals differential
equations

[
v(2) − v(1) −

n−1∑
i=1

(x
(2)
i − x(1)i )

(
∂v

∂xi

)(1)]
dP

=
[
s(2) − s(1) −

n−1∑
i=1

(x
(2)
i − x(1)i )

(
∂s

∂xi

)(1)]
dT

+
n−1∑
i=1

n−1∑
k=1

(x
(2)
i − x(1)i )

(
∂2g

∂xi∂xk

)(1)
dx(1)k , (15)

[
v(2) − v(1) −

n−1∑
i=1

(x
(2)
i − x(1)i )

(
∂v

∂xi

)(2)]
dP

=
[
s(2) − s(1) −

n−1∑
i=1

(x
(2)
i − x(1)i )

(
∂s

∂xi

)(2)]
dT

+
n−1∑
i=1

n−1∑
k=1

(x
(2)
i − x(1)i )

(
∂2g

∂xi∂xk

)(2)
dx(2)k , (16)
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and the additional conditions of equilibrium

Li − Ln
T

dT + (�vn −�vi)dP −D
(
∂g

∂xi

)(2)

+D
(
∂g

∂xi

)(2)
= 0,

i = 1,2, . . . , s − 1, s + 1, . . . , n− 1. (17)

The coefficients on the differentials ofT andP in Eqs. (15)
and (16) are the differential molar entropy and volume
effects of the phase transitions. These effects are defined
as the differential molar effects of the formation of phases,
i.e., the corresponding changes of entropy and volume of a
two-phase system under isothermal–isobaric formation of
one mole of the phase (2) from the infinite amount of the
phase (1) (Eq. (15)) or of one mole of the phase (1) from
the infinite amount of the phase (2) (corresponding coeffi-
cients in Eq. (16) taken with the opposite sign) [7]. We will
denote the volume effects asv(12) andv(21) and the entropy
effects ass(12) and s(21). Where phase (1) is a liquid and
phase (2) is a vapour, these effects are the differential molar
effects of evaporation. The entropy effects in Eqs. (15) and
(16) can be expressed through the differential heatsQ(12)

andQ(21) as given by

Q(kr) = Ts(kr).

The derivatives of the type(
∂2g

∂xi∂xk

)

directly characterise the thermodynamic stability of a sys-
tem.Li in Eq. (17) is the partial molar heat of vaporisation
of componenti. With n = 2 Eqs. (15) and (16) transform
into the Van der Waals equation (14) while withn = 1 they
transform into the Clausius–Clapeyron equation (13).

Undoubtedly, it is not possible in this paper to give
even a brief review of all the consequences that have been
obtained from Eqs. (15)–(17). The majority of these results
as obtained by the mid-1960s were published in mono-
graphs [7,12]. We will describe some of the results for
vapour–liquid equilibria in the following section.

It should be noted that recently relationships similar to the
generalised Storonkin–Van der Waals equation have been
widely discussed in the literature (see, e.g., [13]), though
it was the research started in St. Petersburg University that
led to a very wide range of novel thermodynamic results in
this area. In particular, Rusanov [14,15] derived the gener-
alised differential equation for phase equilibria accounting
for surface phenomena. Filippov worked out the thermody-
namics of phase equilibria within the metrics of the Gibbs
energy (see, e.g., [16–18]). According to the latter approach
the generalised differential equation of Storonkin–Van der
Waals takes the following compact form:

(	xβ − 	xα)Ĝα d	xα = s(α|β)dT − v(α|β)dP, (18)

which simplifies both the use of the equation in some appli-
cations and deriving several new consequences. In Eq. (18)
	xβ − 	xα and d	xα are, respectively, the vectors of theαβ
tie-line and the shift of theα-phase composition(	xβ −
	xα)Ĝα d	xα is their scalar product in the metric of the Gibbs
energy,v(α|β) and s(α|β) are the coefficients on the dif-
ferentials ofT and P in Eq. (14). For example, it follows
directly from Eq. (18) that forT , P = const the vectors
	xβ − 	xα and d	xα should be orthogonal, i.e., tie-lines and
isotherms–isobars of coexistent phases can only cross but
not touch each other.

Differential equations for multiphase multicomponent
systems together with the results of their investigation are
published in the monograph [12].

One would expect that the development of the thermody-
namic theory on the base of rigorous differential equations
describing phase equilibria might lead to the development of
applied calculation methods on the base of these equations.
It was Van der Waals who was the first to note that to do this
one needs to know the equation of state for the phases [8].
Though Van der Waals himself was the author of a widely
known equation of state, in his time the possibilities of
such synthesis of the thermodynamic phenomenology and
molecular-statistical approach were very restricted. This
was due to the then insufficient development of the kinetic
theory and of the molecular theory of solutions, and, natu-
rally, to the lack of the calculation capabilities that we have
nowadays.

Unfortunately, modern methods of phase equilibria cal-
culation do not use the achievements of the thermodynamic
theory to their full extent. Sometimes one gets the impres-
sion that thermodynamics and the calculation methods in
the theory of equilibrium exist independently, being close
but not closely related fields of science. The problem to be
solved when putting together empirical equations of state
and rigorous differential equations of the thermodynamic
theory is the problem of integrating the differential equa-
tions. In doing this, even integrating such an important
thermodynamic relationship as the Gibbs–Duhem equation
becomes only a special case since it leaves open the ques-
tion about the type of dependence of chemical potentials
on temperature and pressure. Therefore, the universal ap-
proach would be in integrating a general relationship like,
e.g., the generalised Storonkin–Van der Waals equation.
Unfortunately, this problem is not yet solved.

4. Rules of Konovalov and Vrevskii

Numerous aspects of thermodynamics of equilibrium
between liquid phases and vapour are widely described in
the literature. There is no need in this brief review to either
derive the main equations or to review all literature sources
treating this problem. We will concentrate on describing
only several important problems of the theory.
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The main goal of the theory of phase equilibria is to
establish a correlation between the compositions of the
coexisting phases, temperature, pressure, and other thermo-
dynamic properties (surface, electrical, magnetic and other
properties).

Usually, the following problems are solved in the theory
of vapour–liquid equilibria:

• the problem of the correlation between the composition
of the phases, temperature, and pressure (under isobaric
or isothermal conditions, respectively);

• the problem of the influence of temperature and pressure
on the phase equilibrium under some additional conditions
imposed by changes in the composition of the phases.

The first group of problems is the subject of the rules
(laws) of Konovalov, the second that of the rules (laws)
of Vrevskii. Both researchers gave their original ther-
modynamic inferences of several fundamental laws for
vapour–liquid equilibria in binary systems. The further
thermodynamic analysis showed that all these rules may be
formulated on the base of a single approach, i.e., with the
help of the Van der Waals differential equation [19].

Let us consider just three rules of Konovalov and three
rules of Vrevskii. The first rule of Konovalov can be derived
from the combination of the differential equations of Eq. (14)
written with the variables for the liquid and vapour phases,
which gives [7]

(
dP

dx(1)

)
T

=
(
∂2g

∂x2

)(1)
x(2) − x(1)
v(12)

, (19)

(
dP

dx(2)

)
T

=
(
∂2g

∂x2

)(2)
x(1) − x(2)
v(21)

, (20)

Fig. 1. Equilibrium diagrams of binary vapour–liquid systems under isothermal and isobaric conditions with critical points.K is the critical point,PR
and TR the borders of the performance of Konovalov’s first rule.

(
dT

dx(1)

)
P

= −
(
∂2g

∂x2

)(1)
T
x(2) − x(1)
Q(12)

, (21)

(
dT

dx(2)

)
P

= −
(
∂2g

∂x2

)(2)
T
x(1) − x(2)
Q(21)

. (22)

One can easily see that Eqs. (19)–(22) directly determine the
influence of changes in composition on pressure (T constant)
or temperature (P constant). Under normal conditions far
from the critical conditions, we have

V 12 > 0, Q12 > 0, (23)

and

V 21 < 0, Q21 < 0. (24)

The derivatives∂2g/∂x2 in these relationships are posi-
tive due to the stability criteria. Therefore, the sign of the
derivatives is fully determined by the difference in the liq-
uid and vapour compositions. Hence we obtain the rules
which express the well-known first rule of Konovalov:

• The pressure of the vapour over a solution increases
(decreases) with the increase of the amount of the compo-
nent whose concentration in the vapour is larger (lower)
than in the solution.

• The boiling temperature of a solution increases (dec-
reases) with the increase of the amount of the component
whose concentration in the vapour is lower (larger) than
in the solution.

Exceptions from these rules are due to the conditions of
Eqs. (23) and (24). In fact, for the states close to the critical
point the signs of the volume and heat effects can change to
the opposite, which will result in the violation of the above
rules. Figs. 1 and 2 present diagrams for binary systems
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Fig. 2. Dependence of vapour composition on the liquid composition in binary systems. Dotted lines are tangents to the curvex(2) = f (x(1)) at the
azeotropic points (M is the minimum of pressure or maximum of temperature, N the maximum of pressure or minimum of temperature). Curves 2 and
3 with azeotropic points, 1 and 4 with non-azeotropic systems.

with critical points in the vapour–liquid equilibrium. It is
evident that at pressures higher thanPR and temperatures
lower thanTR the first rule of Konovalov is not obeyed. At
P = PR andT = TR the values ofV12 andV21 or Q12 and
Q21 become equal to zero.

The second rule of Konovalov refers not to the full
vapour–liquid equilibrium diagram, but to the extreme
points of the boiling temperature or vapour pressure.
Therefore, it is a particular consequence following from
Eq. (14):

• In the extreme points of temperature or pressure the com-
positions of the coexisting phases are equal.

This is a condition for azeotropy and it is the essence of
the second rule of Konovalov. It should be noted that the
second rule has a general thermodynamic meaning, i.e., it
is not restricted to binary vapour–liquid systems but can
be extended to two-phase multicomponent systems of any
physico-chemical type, e.g., liquid–solid systems. In the
world literature this rule (law) is called the Gibbs–Konovalov
theorem since the analogous conclusion can be found
already in the work of Gibbs [1].

If one combines Eqs. (19) and (20) or (21) and (22) for
different phases the following equations are obtained:(

dx(2)

dx(1)

)
T

= − (∂
2g/∂x2)(1)

(∂2g/∂x2)(2)

v(21)

v(12)
, (25)

(
dx(2)

dx(1)

)
P

= − (∂
2g/∂x2)(1)

(∂2g/∂x2)(2)

Q(21)

Q(12)
. (26)

When the inequalities given in Eqs. (23) and (24) are fulfilled
one obtains the following rule:

• Under isothermal and isobaric conditions the composi-
tions of the coexisting phases of a binary vapour–liquid
system change in a similar direction.

This rule is referred to as the third rule of Konovalov.
Now we will consider the rules of Vrevskii. For the sake of
brevity we will give the rules without deriving them ther-
modynamically. According to the first rule [7],

• On increasing the boiling temperature of a solution with
given composition the vapour becomes enriched with the
component whose partial molar evaporation heat is larger.

Again, this rule may not be obeyed in the vicinity of
critical points. Besides, it is supposed that one may neglect
the non-ideality of the vapour.

The second rule of Vrevskii determines the direction of
changes in the composition of the azeotrope with the changes
in temperature [4,7,20]:

• If the vapour pressure of the vapour–liquid system has
a maximum (minimum) value, then on increasing tem-
perature the azeotrope mixture witnesses the increase of
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concentration of the component whose partial molar evap-
oration heat is higher (lower).

Analogous rules occur in the case of varying pressure. The
limitations with regard to the validity of the second rule are
the same as for the first one. If one takes into account that
the volume of the vapour significantly exceeds the volume
of the condensed phases then the second rule of Vrevskii
can be expressed by the following relationship:(

dx

dT

)
Az

≈ xAz(1 − xAz)

1 − (∂x(2)/∂x(1))P,T
L1 − L2

RT2
, (27)

where the index Az means that the respective quantity refers
to the azeotrope, andL1 andL2 are the partial molar evap-
oration heats of components 1 and 2.

It follows from Eq. (27) that several qualitative conse-
quences can be deduced with regard to the temperature shifts
of the azeotropes [7]. For example, the intensity of the tem-
perature shift of the azeotrope composition will be larger
which

• the difference of partial molar evaporation heats of the
components is higher;

• the difference in vapour and liquid compositions is lower;

Fig. 3. Dependencies of binary azeotropic compositions on temperature in the systems: (1) cyclohexane (x)–benzene; (2) benzene (x)–propanol-2; (3)
benzene (x)–propanol; (4) benzene (x)–2-methylpropanol-1 [7].

• the composition of the azeotrope to 0.5 mol fraction is
closer.

It should be noted that Eq. (27) can be used for the di-
rect quantitative calculations of the shifts of the azeotrope
composition with temperature. The value of the derivative(
∂x(2)

∂x(1)

)Az

P,T

can be calculated as the inclination tangent of the curve
x(2) = f (x(1)) (Fig. 2). Fig. 3 presents the dependencies
of azeotrope composition on temperature for various binary
systems [7]. Difficulties in using Eq. (27) for practical
calculations are due to the determination of values of par-
tial molar evaporation heats of components,Li . Though
it is often noted in the literature that partial molar evapo-
ration heats can be replaced by evaporation heats of pure
components, in practice such replacement turns out to be
incorrect.

The third rule of Vrevskii enables one to compare the
influence of temperature changes on the composition of
the azeotrope and vapour (with fixing the composition of
the solution) [7].
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Fig. 4. Displacement of vapour composition and binary azeotropic composition relative to the initial composition of a solution with change of temperature.
V′–V′′ and A′–A′′ curves for displacement of the vapour and solution compositions, respectively.

• On changing the temperature of the solution whose curve
of the vapour pressure passes through the maximum (min-
imum) the composition of the vapour over the solution as
well as the composition of the azeotrope mixture change
in the same direction (in opposite directions).

Obviously, this rule can be considered the combination
of the first and second rules of Vrevskii. Fig. 4 illustrates
one of the variants of the system’s behaviour. On increasing
temperature, the composition of the azeotrope is enriched
with the component 2. The vapour corresponding to the
composition x0 is also enriched with the component 2,
which means that in this case the compositions of the
azeotrope and the vapour change in the same direction. The
analogous regularities occur in the case of dependence on
pressure. It should be noted that the formulation of the third
rule follows from the rigorous thermodynamic relationship(

dxAz

dT

)
x0

= (∂2g/∂x2)(2)

(∂2g/∂x2)(2) − (∂2g/∂x2)(1)

(
dx(2)

dT

)
x0

,

(28)

where the symbolx0 indicates that the derivatives are
taken in the same point of the composition of the solution.

Therefore, the third rule is free from limitations similar to
those for the first and second rules of Vrevskii. In partic-
ular, this rule is valid for the systems consisting only of
condensed phases.

Expansion of the rules of Konovalov and Vrevskii to mul-
ticomponent systems can also be performed on the base of
the differential equations of coexistence of phases, i.e., the
system of generalised equations (15)–(17). However, even
for ternary systems the fulfilment of the rules as expressed
for binary systems depends on the way the composition is
changed. For example, on adding one of the components
to a ternary mixture, that is on shifting the composition of
the solution along the secants of the concentration triangle,
the first rule of Konovalov may not be fulfilled in the above
formulation.

The book [7] gives the conditions under which this
rule is violated (see Fig. 5). At the point M the secant of
the concentration triangle touches the isotherm–isobar of
the solution, i.e., the following condition holds:(
∂P

∂x
(1)
3

)
x1/x2=const

= 0, or

(
∂T

∂x
(1)
3

)
x1/x2=const

= 0.

(29)
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Fig. 5. Isotherms–isobars, the linex1/x2 = const and the region where Konovalov’s first rule is not valid the segment MN (the
chloroform(l)–ethanol(2)–hexane(3) ternary at 328.15 K [105]).

The condition that has to be fulfilled for the point N is

x
(1)
3 = x(2)3 . (30)

Meanwhile, we can point to the only way of changing the
composition when the first rule of Konovalov becomes valid
for all components. This is the case of open evaporation
curves, i.e., the curves along which the composition of the
solution changes in the course of evaporation (simple distil-
lation lines). It is well known that the differential equation
of a simple distillation line is(

dxi
dxk

)
D

= x
(2)
i − x(1)i
x
(2)
k − x(1)k

. (31)

Combining this relationship with the generalised Storonkin–
Van der Waals equation (15) and keeping in mind the criteria
of stability for the phases we can show that the first rule of
Konovalov is fulfilled along the curves described by Eq. (31).
Obviously, the general regularities of the dependence of
changes inT or P on the shift of the composition of a multi-
component system are not necessarily related to the classical
formulation of the first rule of Konovalov for binary systems.
For example, using the vector form of the generalised differ-
ential equation (18) one can show that when the composition
of a liquid shifts infinitesimally from the isotherm–isobar in
the direction of the vapour–liquid tie-line vector(L → V )

(in other words, from the isotherm–isobar of liquid to the
isotherm–isobar of vapour in the concentration triangle), the
pressure increases (the temperature decreases). This conclu-
sion seems to be rather natural and self-evident.

In this paper, we will not consider in detail the generalisa-
tion of other rules of Konovalov and Vrevskii for multicom-
ponent systems. It should be noted, e.g., that some qualitative
rules for shifting the composition of azeotrope mixtures with
temperature [21] can be treated as the generalisation of the
respective rules of Vrevskii. Besides, we recall that the sec-
ond rule of Konovalov (the Gibbs–Konovalov theorem) is of
a general thermodynamic nature and has no limitations with
regard to either the physico-chemical type of the systems or
the number of components. Some peculiarities of the corre-
lation betweenT, P and the composition of multicomponent
systems including several liquid phases are also outside the
scope of this paper. We only note that they can be treated
on the base of the system of generalised Storonkin–Van der
Waals differential equations for multiphase systems [10].

5. Systems with chemical reactions

In this section, we will discuss several peculiarities of
the thermodynamic analysis of systems with chemical reac-
tions. Nowadays these systems attract increasing attention
of the researchers (see, e.g., [22–26]). The practical reason
for this interest can be explained mostly by the intensive
development of new technologies involving mass exchange
processes in reactive systems.

Investigation of the correlation between chemical affinity,
rate of chemical reactions, and other parameters character-
ising the state of a reactive system based on the thermody-
namics of irreversible processes was carried out thoroughly
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by the school of Prigogine. For relatively low reaction rates
a reactive liquid mixture together with the coexisting vapour
can be treated as a two-phase system in a state of partial
(phase but not chemical) equilibrium. In this case, the inves-
tigation of the regularities of changes in the characteristics
of the phases with the changes in composition can be per-
formed in the way similar to that of the regularities for the
common systems without reaction. Meanwhile, the reactive
systems prohibit some peculiarities that differentiate them
from the systems without reaction.

We will consider the ultimate instance of the chemical
equilibrium in a multicomponent solution. In this case, the
conditions of phase equilibrium or the fundamental equa-
tions for the phases must be taken together with the condi-
tions of chemical equilibrium∑
νjµj = 0, (32)

wherevj is the stoichiometric coefficient of a substancei
participating in the reaction∑
νjRj = 0. (33)

We will describe this case on the base of the results obtained
by Zharov [27–29], who was one of the first to set and
solve the problem of a correct thermodynamic approach to
the phase equilibria in reactive mixtures. For the sake of
simplicity we will confine ourselves to considering a single
reaction in a system consisting of four substances where the
total number of moles is unchanged:

4∑
j=1

νjRi = 0, (34)

or

R1 + R2 = R3 + R4, (35)

wherevi are stoichiometric coefficients, andv1, v2 = −1,
v3, v4 = +1. Combining the condition expressed in Eq. (34)
with the fundamental equation for the Gibbs energy

dg = −s dT + v dP +
4∑
j=1

µj dxj , (36)

we obtain the equation

dg = −s dT + v dP +
3∑
j=1

µj d

(
xj − νj

ν4
x4

)
, (37)

which, as against Eq. (36), includes only three values of the
chemical potentials, namely for the components 1–3. The
form of Eq. (37) makes it possible to introduce, in a ra-
tional manner, new composition parameters—the values in
brackets after the summing symbol in the right-hand side of
Eq. (37). On the surface of chemical equilibrium the com-
position of the solution is characterised by three parameters
αj (accounting for theνj values)

α1 = x1 + x4, α2 = x2 + x4, α3 = x3 − x4. (38)

The quantitiesαj are interrelated through an equation fol-
lowing from Eq. (37)

α1 + α2 + α3 = 1. (39)

And from Eq. (38)

0< α1 < +1, 0< α2 < +1, −1< α3 < +1. (40)

Therefore, on the surface of chemical equilibrium (the sur-
face of a zero chemical affinity,A = 0) the composition of a
given reactive mixture can be presented in the concentration
square of the variablesα.

It should be noted that the surface of chemical equilibrium
itself presents a surface inside the concentration tetrahedron.
The complete set of points that belong to the tetrahedron
includes all the compositions, both chemically equilibrium
and non-equilibrium. All four planes of the tetrahedron cor-
respond to chemically non-equilibrium ternary systems, two
of the six edges correspond to the non-equilibrium binary
systems (R1–R2, R3–R4), and the remaining four edges cor-
respond to chemically inert binary systems (R1–R3, R1–R4,
R2–R3, R2–R4) that can be formally treated as being in chem-
ical non-equilibrium.

Fig. 6 shows the surface of chemical equilibrium of the
system involving an esterification–hydrolysis reaction

CH3COOH+ CH3CH2OH ⇔ CH3COOCH3CH2 + H2O

(41)

in the concentration space using a rectangular co-ordinate
system (the surface is built using the data from [30]). Ob-
viously, such presentation of the data makes it difficult or
insufficiently illustrative to draw isotherms–isobars for the
phase equilibrium. The use of the concentration square of

Fig. 6. The surface of chemical equilibrium in the system: acetic
acid(l)–propanol(2)–water(3)–propyl acetate(4) at 318.5 K. Points on the
surface are experimental results from [30].
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Fig. 7. Isotherms–isobars for the liquid phase for vapour–liquid equilib-
rium on the chemical equilibrium surface for acetic acid(l)–propanol(2)–
water(3)–propyl acetate(4) at 318.5 K: (1) 100, (2) 90 mm Hg.

the α-parameters makes possible a more convenient repre-
sentation. In this case, the isotherms–isobars can be pre-
sented in the plane rather than in a 3D diagram. Figs. 7 and 8
display the isotherms–isobars of the surface of pressure for
the liquid and the equilibrium vapour in the state of chem-
ical equilibrium of the reaction (41) [30,31]. The shape of
the curves in Figs. 7 and 8 shows that there is a point on
the surface of chemical equilibrium that corresponds to the
extreme (maximum) of vapour pressure over the solution.
Meanwhile, this point is not a common azeotrope since here
the composition of vapour and liquid are not equal. In ac-
cordance with the Gibbs–Konovalov theorem the condition
of equality of phase compositions is valid only in the point
of absolute extreme ofP or T rather than in that of the con-
ditional extreme. As for the extreme in the chemical equilib-
rium states, it corresponds only to the conditional extreme
on the surfaceA = 0.

Fig. 8. Isotherms–isobars for the vapour phase for vapour–liquid equilib-
rium on the chemical equilibrium surface for acetic acid(l)–propanol(2)–
water(3)–propyl acetate(4) at 318.5 K: (1) 100, (2) 90, (3) 80, (4) 70, (5)
60, (6) 50, (7) 40 mm Hg.

Among other works dealing with the vapour–liquid
equilibria in reactive systems we will note the paper [24]
introducing the concept of azeotropy in reactive systems
(reactive azeotrope), papers [22,23,25] presenting reviews
of the problem, and some other works [32–34]. For ex-
ample, in the paper [34] a somewhat different approach to
presenting the composition of a reactive system is presented.

6. Thermodynamic verification and calculation
of vapour–liquid equilibria

In the numerous publications in the literature on the ther-
modynamics of vapour–liquid equilibria the key attention
seems to be paid to problems of thermodynamic verifica-
tion of the data. This is for two reasons. The first one is the
practical importance of data verification methods for any
physico-chemical experiment. The second one is the relative
simplicity and the possibility of almost direct use of even
the fundamental equations of thermodynamics for the data
verification. The very evident illustration of the usefulness
of thermodynamics for solving practical problems is in the
thermodynamic methods of data verification. Obviously,
the importance of the problem gave birth to a very wide
range of thermodynamic research works aimed at the devel-
opment of thermodynamic data verification methods. In this
section, we will give a brief review of the main approaches
and directions in qualitative and quantitative thermodynamic
verification of data on equilibrium between one or several
liquid phases with the vapour in multicomponent systems.
A possible classification of the methods can be presented as
follows:

• methods based on the direct use of conditions of equi-
librium and the respective consequences in differential
form;

• methods based on integrating the differential equations
describing the equilibrium;

• methods based on the use of thermodynamic inequalities—
stability criteria and their consequences;

• methods using thermodynamic–topological analysis of
phase diagrams.

The direct use of thermodynamic relationships (condi-
tions of equilibrium or stability criteria) seems to be the
most reliable approach to data verification. For example,
violation of the first rule of Konovalov in the case of binary
systems points to the incorrectness of the data obtained,
certainly if all the requirements are met with regard to the
rule’s origin. Therefore, the differential methods of data
verification enable one not only to form conclusions about
the correctness of the data at a given point (points) of
the phase diagram, but to evaluate the phase diagram as a
whole and to differ between thermodynamically consistent
structures and unfeasible structures.

The differential thermodynamic relationships that follow
from the conditions of equilibrium are presented by, e.g.,
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Maxwell’s equations:

∂Xi

∂Yk
= ∂Xk

∂Yi
,

∂Yk

∂Xi
= ∂Yi

∂Xk
,

∂Xi

∂Xk
= −∂Yk

∂Yi
, (42)

where Xj is an intensive parameter (T, (−P), µ1,
µ2, . . . , µn), andYj the conjugate extensive parameter (S,
V, m1, m2, . . . , mn). Another example is the triple product
for the derivative of a thermodynamic function,Z:(
∂Y3

∂Y2

)
Z1,Y1

(
∂Y1

∂Y2

)
Z2,Y2

(
∂Y2

∂Y1

)
Z3,Y3

= −1, (43)

whereZi = ∂Z/∂Yi [2,35]. Eq. (43) can be expanded to the
case of an arbitrary number of parametersYi [36].

Eqs. (42) and (43) and the analogous relationships can
be applied to verify (and calculate) the mutual position of
constant value lines (isolines) for thermodynamic properties.
For example, for the case of isolines of relative volatilityαik

αik = x
(2)
i /x

(1)
i

x
(2)
k /x

(1)
k

,

which is an important parameter in the theory of vapour–
liquid equilibria, the following equation is valid determining
the position of theαik = const isolines in a ternary system
[36]:(

dx3

dx1

)
α31

(
dx2

dx3

)
α23

(
dx1

dx2

)
α12

= 1, (44)

where the subscriptαik means that the derivative is taken
under the conditionαik = const, i.e., along the respective
isolines. Eq. (44) and similar equations (e.g., the rule of
Schumann for the isolines of chemical potentials [37]) can
be easily visualised geometrically. Fig. 9 presents isolines
of relative fugacity together with the respective tangents
(at their cusp point). From Eq. (44), the following method

Fig. 9. Isolines of relative volatility and tangents to them. The calculation
of the direction of the isolineα12 = const at point M from the location
of curvesα32 = const andα31 = const (for a description see text).

follows which enables one to determine the direction of the
isoline α12 on the basis of the direction of the other ones
(α13 andα23) at the given point M. If one draws straight
lines through the apexes 1 and 2 of the concentration tri-
angle parallel to the tangents of the curvesα32 and α13,
respectively, then the straight line passing through their
cusp point M and apex 3 should be parallel to the tangent
of the isolineα12 = const at the point M.

A significantly large number of similar specific rules is
worked out in the theory of vapour–liquid equilibrium. These
rules are mostly published in original papers and in only
a few monographs (e.g., [7,12]). Among the other exam-
ples of the direct use of thermodynamic differential rela-
tionships we will note the method of qualitative verification
of the direction of isotherms–isobars of vapour in ternary
systems, which is based on the use of the equation of the
isotherm–isobar for an ideal vapour. The paper [38] gives
the following modified equation for the isotherm–isobar of
an ideal vapour(

dx(2)2

dx(2)1

)
T ,P

= −α31 − 1

α32 − 1
. (45)

When presenting experimental data for ternary systems with
the use of the isotherms–isobars of the vapour there ap-
pear several problems due to the direct (i.e., without using
models) approximation of the curves. The reason for this
follows from the fact that usually experiments on studying
vapour–liquid equilibria are carried out under an ordered
pre-setting of the solution compositions, the equilibrium
vapour compositions are determined in the course of the ex-
periment and thus the corresponding figurative points in the
concentration triangle are positioned in an unordered way.
As a result, the presentation of the isotherms–isobars of
the vapour or the surface of pressure in the ternary system
occurs with more pronounced errors than the presentation
of the respective curves and surfaces for the solution. This
fact determines, to a large degree, the value of the method
proposed in [38].

The directions of the isotherms–isobars calculated with
Eq. (45) for the composition points studied in the exper-
iments must accord with the approximate direction of the
isotherms–isobars. Fig. 10, taken from [38], illustrates well
this method for the methyl acetate–chloroform–methanol
system. The figure presents experimental points for the
vapour, tangents to isotherms–isobars of the vapour in these
points, and the isotherms–isobars themselves, their direc-
tion being calculated from the experimental data. Fig. 11
presents the results of the analogous verification for the ho-
mogeneous range of the dibutyl ether–water–n-butyl alco-
hol system [39] in which phase separation occurs. It should
be noted that several rules follow from Eq. (45), which
determine the mutual position of the isotherms–isobars and
tie-lines in ternary systems.

The second group of data verification methods for the
vapour–liquid equilibria is of methods based on integrating
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Fig. 10. The test of the location of isotherms–isobars for the vapour in
the system methyl acetate(l)–chloroform(2)–methanol(3) by the method
of Eq. (45): experimental points of vapour composition, tangents to
isotherms–isobars at these points and isotherms–isobars (dotted lines) [38].

thermodynamic differential equations. The classical example
is the often-used method due to Herington [40] and Redlich
and Kister [41]. The attractiveness of the integral methods is
that they test the thermodynamic consistency of a complete
set of experimental data, e.g., data on the equilibrium for
the whole concentration range of a binary system. Most ver-
sions of the methods in question use equations for the excess

Fig. 11. The test of the location of isotherms–isobars for the vapour in the homogeneous region of a system with limited miscibility (dibutyl
ether(l)–water(2)–butyl alcohol(3) at 323.15 K) by the method based on Eq. (45): experimental points of vapour composition, tangents to isotherms–isobars
at these points and isotherms–isobars (dotted lines) [39].

thermodynamic properties. For example, if the activity co-
efficientsγ i of a binary system components are normalised
symmetrically (γi → 1 whenx(1)i → 1) the following equa-
tion becomes valid:∫ 1

0
ln

(
γ1

γ2

)
dx(1)1 = 0, (46)

and can be used for the direct verification of the isothermal
data for the equilibrium. It should be remembered that the
integrated function in Eq. (46) can be expressed using the
average molar excess Gibbs energy,g E, as

gE

RT
= x1 ln γ1 + x2 ln γ2, (47)

d

(
gE

RT

)
T ,P

= ln γ1 dx1 + ln γ2 dx2 = ln

(
γ1

γ2

)
dx1. (48)

At first glance, the integral relationship of Eq. (46) does not
include parameters characterising the vapour phase. In fact,
it is supposed that the quantitiesγ i or gE are calculated from
the data on the equilibrium vapour, either ideal or not. For
a non-ideal vapour, to calculate activity coefficients one has
to use the data for the parameters taking into account the
deviation of the vapour from the ideal behaviour (association
constants, virial coefficients, etc.).

The existing methods exhibit some difference between
the verification of isobaric and isothermal data. As a rule,
one may neglect the influence of pressure on chemical po-
tentials and accordingly on activity coefficients in the liquid
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phase. This embeds the same insignificant error into the cal-
culations as neglecting the compressibility of liquids or the
volume of the liquid phase compared to the volume of the
vapour. But the enthalpy term in the fundamental equations,
which directly reflects the dependence of thermodynamic
properties on temperature, cannot be so neglected.

In using the integral methods of data verification one has
to keep in mind that in this case a positive result is a neces-
sary, but not sufficient, condition of the thermodynamic con-
sistency of the data. Several original papers, e.g. [42–44],
analyse what is “good” and what is “bad” with regard to the
results of integral thermodynamic data verification. Together
with the increase in the number of experimental works on
studying vapour–liquid equilibria, the sophistication of the
phase structure of the systems, the increase in the number
of components, and the study of reactive systems, came the
development of data verification methods based on integrat-
ing fundamental thermodynamic equations. Nowadays one
of the most popular methods is the one proposed by Van
Ness (see, e.g., [45–47]).

It should be noted that in the case of multicomponent
systems when integrating fundamental equations one has
to pre-set a definite direction of the composition change.
For example, in ternary vapour–liquid–liquid systems data
verification can be performed on shifting the composition
along the curves of three-phase equilibrium. We can note
Refs. [48–51] among the pioneer works on data verification
methods in ternary vapour–liquid–liquid systems. Several
aspects of data verification with regard to the vapour–liquid
equilibrium at the surface of chemical equilibrium are
discussed in [52].

Thermodynamic equations used for data verification can
equally well be used for calculations. In fact, when we have
an equation linkingk thermodynamic parameters, then we
can calculate the propertyk from the otherk − 1 ones.
However, thermodynamic data verification using the same
equation obviously becomes senseless except for a few spe-
cial cases. For example, the Duhem–Margules equation for
a binary system

x
(1)
1
∂ lnp1

∂x
(1)
1

− x(1)2
∂ lnp2

∂x
(1)
1

= 0 (49)

enables one to calculate the partial pressures and compo-
sition of an ideal vapour from data on total pressure [4].
But one cannot then perform verification of the set of ex-
perimental and calculated thermodynamic data using Eq.
(49). But in this case, as in some other cases, the use of the
thermodynamic equation for the calculation can be quite
reasonable even though it prevents the use of this equa-
tion for subsequent data verification. This can be explained
by the increased simplicity and accuracy of experimen-
tal measurement of the total pressure of the equilibrium
vapour compared to the experimental determination of its
composition.

It should be noted that the development of calculation
methods based on the models of solutions accounts for

the significant decrease of interest among the practical
researchers and engineers in the rigorous thermodynamic
methods of calculation and data verification. In fact, when
a model or an empirical equation is used to express the
average excess molar Gibbs energy through the parameters
of state, it follows that the activity coefficients calculated
from the empirical equation forg E using rigorous thermo-
dynamic equations become thermodynamically consistent
(in particular, they are consistent with the Gibbs–Duhem
equation). Subsequent thermodynamic verification becomes
evidently useless. Meanwhile, notwithstanding the degree
of flexibility of the model of solution, the capabilities of the
model are restricted to a wide but definite class of physico-
chemical systems. The practical value of phase equilibria
calculations on the base of the model approach is certainly
very significant. Though, as Frenkel said, “a good theory of
complex systems must be nothing but a good caricature of
these systems” [53]. A physical model has the right to be
the same. As for thermodynamics, we can follow Van Ness
in saying: “The thermodynamic mill grinds slowly, but it
grinds exceeding fine” [43].

We will restrict ourselves to making these notes, since a
review of the models of solutions used to calculate vapour–
liquid equilibria was not the aim of this work. The works on
the models of solutions are numerous and they are widely
known. We will note [54,55] among the recent works. Two
other directions of developing data verification methods
with regard to vapour–liquid equilibria, mentioned above,
are directly linked to the content of the following sections,
which describe thermodynamic–topological methods and
methods based on the theory of stability.

7. Thermodynamic–topological methods

Topology is relatively abstract compared to other fields
of higher mathematics. The subject of topology is to deter-
mine the most general relationships between mathematical
objects. Together with algebra, topology is the basis of mod-
ern mathematics. The aim of topology is the mathematical
investigation of the idea of continuity that has a fundamen-
tal meaning in the natural sciences. If, e.g., the conformity
between the objects in classical geometry is established in
terms of equality, similarity, etc., then topology introduces
the notion of homeomorphism as the key idea in the theory.
When it becomes possible to establish a reciprocation (a
continuous mapping) of two topological spaces, the spaces
are referred to as homeomorphous. For example, a circle is
homeomorphous to any square, a cube is to a sphere, but a
leg is not homeomorphous to a circle.

The term “topology” is often treated in a narrow sense
in the natural sciences. For example, in the theory of phase
equilibria, the topology of phase diagrams is used by many
researchers to mean a geometrical structure of a diagram in
a common sense. The geometry of phase diagrams was stud-
ied in the works of Van der Waals [8], Korteweg [56] and
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Schreinemakers [57,58] about 100 years ago. In Russia (i.e.,
the former Soviet Union) a significant contribution to the de-
velopment of geometric concepts in the theory of phase equi-
libria was made by the school of Kurnakov [59–62], which
established the foundations ofphysico-chemical analysis.

Meanwhile, the capabilities of topology are not limited to
the studies of the common geometry among phase diagrams.
In the theory of phase equilibria both purely geometrical and
topological methods must be used together with the thermo-
dynamic approach. We will describe here some results of the
thermodynamic–topological analysis of vapour–liquid equi-
librium phase diagrams.

In 1958, the Journal of Physical Chemistry (USSR)
published a paper by Gurikov [63] “On the structure of
vapour–liquid equilibrium diagrams of ternary homoge-
neous solutions” describing the results of the author’s
diploma thesis in the Department of the Theory of Solutions
(now the Department of Chemical Thermodynamics and
Kinetics) under the leadership of Prof. A.V. Storonkin. The
thermodynamic–topological analysis of ternary vapour–
liquid systems was performed in this work on the basis of
a correct combination of thermodynamic rules (conditions
of equilibrium and stability criteria) and the qualitative the-
ory of differential equations. The main results of the work
included:

• local regularities in the vicinity of singularities of the sim-
ple distillation diagrams in ternary systems (pure compo-
nents, binary and ternary azeotropes);

• non-local regularity rules for correlations between the
number and type of singularities in ternary vapour–liquid
systems (azeotropy rules);

• thermodynamic–topological classification of ternary
vapour–liquid systems.

General problems of the thermodynamic–topological
analysis of multicomponent heterogeneous systems of dif-
ferent physico-chemical types were solved in the works of
Serafimov and Zharov (see, e.g., [64–72]). Besides having
a large scientific and theoretical significance, these works
are also of practical importance for chemical engineering,
being the basis of working out sequences of separation
processes (distillation, rectification, etc.) [73,74].

We now discuss several results of the thermodynamic–
topological analysis of ternary systems. Analysis of the
peculiarities of behaviour of simple distillation curves (dis-
tillation lines) described by the differential equations of
Eq. (31) together with the conditions of equilibrium made it
possible to determine possible types of singularities in the
simple distillation diagrams for ternary systems. Pure com-
ponents, binary and ternary azeotropes, are characterised by
two types of singularities: nodes and saddles (but not centres
or focuses) (Fig. 12). The formula expressing the non-local
rules for the concentration triangle was obtained as a result
of the use of Poincaret’s formula for the sphere [7],

N +N ′ + F = C + C′ + 1, (50)

Fig. 12. Simple distillation lines in the vicinity of singular points for
ternary azeotropes: (a) node, (b) saddle.

where N, C and F are the number of nodes, saddles and
focuses at a hemisphere, and 2N′ and 2C′ the number of
nodes and saddles at the equator of the sphere.

A triangle is not a figure homeomorphous to a sphere.
The use of the topological formula of Eq. (50) for a
sphere in this case can be justified if one considers a tri-
angle or a set of triangles as a surface obtained by cutting
an enclosed surface homeomorphous to a sphere. The
thermodynamic–topological formula for a ternary system
then looks as follows [7,63,70]:

2C3 + C2 + 2 = 2N3 +N2 +N1, (51)

where C3 and C2 are the numbers of ternary and binary
saddle points, andN3, N2, andN1 the numbers of ternary,
binary and unary (pure components) nodes on the residue
curve map for a ternary system. Eq. (51) expresses the
azeotropy rule for ternary systems. It should be noted that
the diagram of isotherms–isobars can be easily built on the
basis of the diagram of distillation lines. In fact, accord-
ing to the stability criteria, the simple distillation lines and
isotherms–isobars cannot both touch (tangentially contact)
and coincide with each other [7]. Therefore, there is a con-
formity between the two types of diagrams: simple distil-
lation lines and isotherms–isobars. An example is given in
Fig. 13 where simple distillation lines are represented to-
gether with isotherms–isobars.

As an example of a structure that does not correspond
to Eq. (51) one can take the diagram included in the
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Fig. 13. Simple distillation lines and isotherms–isobars (dotted lines) for one variant of the possible structure of diagrams with three binary and ternary
azeotropes: the system chloroform(l)–ethanol(2)–hexane(3) at 328.15 K [76,105].

classification of vapour–liquid ternary systems by Reinders
and de Minjer [74] (Fig. 14). In fact, in the case shown
in Fig. 14,C3 = 0, C2 = 0, N3 = 0, N2 = 1, N1 = 2,
i.e., Eq. (51), is not obeyed. Note that, rigorously speaking,
Fig. 14 is not impossible from the thermodynamic view-
point, but refers to a thin unstable structure appearing as
a result of a bifurcation. In this case, the apex 3 of the
concentration triangle is a point of a tangential azeotrope.
Small changes in parameters lead to changes in the topo-
logical structure, transformation of tangential azeotropes
into common diagrams that obey the condition expressed in
Eq. (51) (see, e.g., [70,73,75]).

Fig. 14. Diagram from [74] that is contrary to the azeotropic rule
(Eq. (51)).

Non-local regularity rules are the basis of the classifi-
cation of multicomponent vapour–liquid systems. The
classification of ternary systems by Gurikov [63] was
later complemented by Serafimov who also proposed his
own classification [63], taking into account the position of
thermodynamic isolines of constant volatilityKi ,

Ki = x
(2)
i

x
(1)
i

. (52)

The rules for these isolines as well as for the isolines of rel-
ative volatility αik [21,76,77] refer not only to singularities
but to non-singular points of diagrams of simple distillation
lines. The conditionKi = 1 corresponds to the touching
of a simple distillation line to the line of compositions
x
(1)
i = const, while the conditionαik = 1 corresponds

to the touching of a simple distillation line to the line
(x
(1)
i /x

(1)
k ) = const. These rules follow directly from the

differential equation, Eq. (31). Assuming that there can
be no more than one binary azeotrope in a binary system
and no more than one ternary azeotrope in a ternary system
the classification of Serafimov gives 38 types of diagrams in
ternary vapour–liquid systems. Unfortunately, it is impos-
sible to show these diagrams and discuss them in this brief
review.

With the above-mentioned limitations on the number
of binary and ternary azeotropes, Eq. (51), expressing the
azeotropy rule, can be transformed to the form

2C3 +M + 2 = 2N3 + 2N2 +N1, (53)
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whereM is the total number of binary azeotropes. When
using the rule of azeotropy one should take into account
that the number of nodes cannot be less than two. These
nodes correspond to the compositions of the solutions hav-
ing the lowest and highest boiling temperatures (vapour
pressures).

An interesting consequence of the azeotropy rule is the
possibility of predicting in some cases the thermodynamic–
topological structure of a phase diagram of a ternary system
using data on only the binary subsystems. For example, for a
ternary system with a single binary azeotrope which displays
the following relationships between the boiling temperatures
of pure components and the azeotrope

T12 < T3 < T1 andT2 or T12 > T3 > T1 andT2

(T12, T1, T2, T3 are the boiling temperatures of the binary
azeotrope and the corresponding pure components), a
ternary saddle point (azeotrope) should exist in the sys-
tem. The diagram of the isotherms–isobars corresponding
to these cases is given in Fig. 15. This is an experimental
example, the system toluene–dioxane–isobutyl alcohol [78].

Investigation of the possible structures containing ternary
(and multicomponent) heteroazeotropes can be found in
[79,80]. Ref. [17] discusses problems of the thermodynam-
ics of ann-component azeotrope in the metrics of the Gibbs
energy.

To terminate this section we will finally note that the sig-
nificant development of the azeotropy rule and, in particu-
lar, its expansion to the cases of tangential azeotropy and
polyazeotropy was carried out in the works of Serafimov
et al., who continue their research work in this direction
(among recent works see, e.g., [73,80,81] and other papers).

Fig. 15. Diagram with one binary and ternary azeotropes.
Isotherms–isobars for the liquid phase in toluene(l)–dioxane(2)–isobutyl
alcohol(3) at 253.15 K (pressure shown in mm Hg). (�) and (�) binary
and ternary azeotropic points.

8. Analysis of vapour–liquid equilibrium on the base
of stability criteria

In the final section of this review we will discuss several
aspects of the use of stability criteria to calculate and verify
vapour–liquid equilibrium data. Obviously, stability criteria
have to be considered together with and inseparably from
the conditions of equilibrium since together they represent
the foundation of the thermodynamics of heterogeneous sys-
tems. Meanwhile, it has to be noted that, according to Gibbs,
these conditions are formulated as two separate statements,
i.e., principles of equilibrium and stability criteria; this is
due to the axiomatic foundations of the Gibbs theory as
analogues of the extremum principles in mechanics. There-
fore, it is possible to develop the theory on the basis of the
conditions of equilibrium only, an approach often used in
equilibrium thermodynamics (including the thermodynam-
ics of vapour–liquid equilibria, in particular) when solving
practical problems. In this approach, the stability criteria are
given a minor role. In particular, the fundamental equations
reflect only the conditions of equilibrium since they set out
the heat effect,�Q, as

�Q = T dS (54)

arising from the Carnot–Clausius relationship

dS ≥ �Q

T
. (55)

This is an equality only for an equilibrium process. In prac-
tice, therefore, the inequality set out in Eq. (55) is ignored
that reflects the law of entropy increase in an adiabatic
system, or, in the general case, the law of the positive
internal entropy change. In this case, the main sense of
the second law of thermodynamics, i.e., thermodynamic
demands for the direction of processes occurring in nature,
remains unexploited. It should be admitted, though, that
the advantages of using the conditions of equilibrium when
studying heterogeneous systems seem evident in some
aspects. In fact, if one considers a continuous set of equi-
librium states of a vapour–liquid system, transition between
these states is described as the equilibrium process by the
Gibbs fundamental equation

dU = T dS − p dV +
n∑
i=1

µi dmi, (56)

or by the fundamental equations for other thermodynamic
potentials. To integrate the fundamental equation (56) one
needs to know the functional dependence of internal energy
on S, V, m1, m2, . . . , mn

U = U(S, V,m1,m2, . . . , mn). (57)

In this case, one can solve the problem of the correlation
between the parameters of different states of the system.
Here the dependence of Eq. (57) for the internal energy or
analogous dependencies for other thermodynamic potentials
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is found with the use of models and empirical relationships.
Though, as was said above, notwithstanding the practical
value of such an approach, the use of empirical equations
significantly narrows the generality of the results obtained.
Using thermodynamic inequalities, i.e., relationships that
are the consequences of stability criteria, one can find a more
rigorous solution of the problem of correlations between
the parameters of different states of the system. These rela-
tionships may also be derived directly from the inequalities
that express the second law (the law of increase of entropy).
On integrating the main inequality of thermodynamics

dU < T dS − p dV +
n∑
i=1

µi dmi (58)

the parametersT, P andµi can be fixed and keep the values
corresponding to the final state of the system. Therefore,
knowing the functional dependence ofU on the parameters
of state is not needed in this case and the problem can
be solved without using empirical dependencies. Mean-
while, the very form of the dependence of Eq. (58) is
an inequality rather than an equation and determines the
qualitative rather than quantitative character of the calcu-
lation results, which, obviously, decreases the interest of
this relationship in solving problems in engineering. But
one should not underestimate the practical value of ther-
modynamic inequalities like both Eq. (58) and the stability
criteria. Some practical results will be described in this
section.

Following Gibbs, we will consider not the inequality of
Eq. (58) that characterises an actual irreversible process, but
the relationships describing the virtual shifts—the distur-
bances of the equilibrium state, i.e., stability criteria. Main
attention will be paid to practically useful results and their
illustration. Therefore, many important aspects of stability
theory will be discussed only briefly. In particular, as in the
case of the conditions of equilibrium, the principal item of
the theory is the problem of the difference between the dif-
ferential and integral relationships and the limitations with
regard to the use of integral thermodynamic inequalities
[82,83]. Integrating the inequalities is directly related to the
problem of stability with regard to finite disturbances of the
equilibrium, which was discussed in Section 2. This prob-
lem is noted by such researchers as Gibbs [1], Munster [2]
and Glensdorf and Prigogine [84]. We will limit ourselves to
saying that the inequalities in the integral form will be fair
if we consider only stable homogeneous and heterogeneous
systems, but not the metastable states [82,83,85].

One of the examples of the use of differential thermo-
dynamic inequalities is the study of the regularities of
isothermal–isobaric changes of chemical potentials of com-
ponents in ternary systems [86,87]. Since, according to the
stability criteria(
∂µi

∂mi

)
T ,P,m1,m2,... ,mi−1,mi+1,mi+2,... ,mn

> 0, (59)

then on shifting the composition along the straight line
passing through theith apex of the concentration trian-
gle the chemical potential of the componenti must in-
crease with the increase of its concentration. Leti = 1,
then(
∂µ1

∂x1

)
T ,P,x2/x3

> 0. (60)

The conditions of stability, Eqs. (59) and (60), must be
obeyed for both a homogeneous phase and a heterogeneous
system. In the latter case, the quantitiesmj andxj can refer
to both the separate phases and the heterogeneous complex
of the phases (gross concentration and gross molar frac-
tions of the componenti) including the number of moles
and mole fraction of the componenti in the system as a
whole.

Let x1 be the gross molar fraction of the component 1 in
the vapour–liquid system. Fig. 16 shows isotherms–isobars
of coexisting phasesr1 andr2 as well as the tie-lines A–C.
According to the stability condition (60), on shifting the
composition along the dotted lines a–c towards the top 1 of

Fig. 16. Illustration of the rule for the location of tie-lines and
the isothermal–isobaric change of chemical potentials:r1 and r2

isotherms–isobars for coexistence phases, A–C vapour–liquid tie-lines (for
a description see text).
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the concentration triangle (i.e., on adding the substance 1
to the system) the chemical potentialµi increases. This is
valid for the heterogeneous range also (in Fig. 16 this is the
range between the curvesr1 andr2). Meanwhile, along the
tie-lines A–C the chemical potentials of the components do
not vary. Therefore, the following inequality holds, e.g., for
the tie-line A and the dotted line a

µm
1 > µ

A ′
1 = µA

1 > µ
N
1 , (61)

where the upper indices indicate that the quantityµ1 refers
to the points m, A′, A and N, respectively. Considering other
tie-lines in Fig. 16a in a similar way it is easy to show that
on shifting the composition along the isotherms–isobarsr1
andr2 from the side 1–2 towards the tie-line B and from the
side 1–3 towards the tie-line B,µi decreases while for the
tie-line B itself it takes the extreme (minimal) value. When
the tie-lines are positioned as in Fig. 16b the tie-line B cor-
responds to the maximal value of the chemical potentialµ1
and on shifting the composition along the isotherms–isobars
r1 and r2 towards this tie-lineµ1 increases. Obviously,
for the vapour–liquid systems, analogous rules should be
valid for the partial pressure of a component. These rules
relating the changes of chemical potentials and the posi-
tion of the tie-lines, according to the way they were de-
rived, have a general thermodynamic sense and are valid
for not only vapour–liquid systems, but for systems of
other physico-chemical types. The analysis of such reg-
ularities for multicomponent systems was carried out in
[86–89].

Another example of the use of thermodynamic differential
inequalities is the analysis of the values of second deriva-
tives of thermodynamic potentials according to the way the
parameters are fixed. Interpreting the stability criteria in this
case is analogous to interpreting the known thermodynamic
condition

CP > CV > 0, (62)

whereCP andCV are heat capacities at constant pressure
and volume, respectively, as a consequence of the thermo-
dynamic inequality(
∂S

∂T

)
P

>

(
∂S

∂T

)
V

> 0. (63)

Thermodynamic relationships of this type are referred to as
the Le Chatelier–Brown principle by many authors (see, e.g.,
[2,7,15,90–99]).

In this section, we will set out some conclusions for
vapour–liquid systems. We will use the fact that it is pos-
sible to write the fundamental equations in a generalised
form denoting extensive parameters (S, V, m1,m2, . . . , mn)
asYi and the conjugate intensive parameters (T, (−P), µ1,
µ2, . . . , µn, respectively) asXi . It was shown in [96,98] that
for a two-phase system the following chain of inequalities

is valid(
∂X1

∂Y1

)
Y
(1)
2 ,Y

(1)
3 ,... ,Y

(1)
n+2

>

(
∂X1

∂Y1

)
(X
(1)
2 −X(2)2 ),Y

(1)
3 ,... ,Y

(1)
n+2

> · · ·

>

(
∂X1

∂Y1

)
(X
(1)
2 −X(2)2 ),(X

(1)
3 −X(2)3 ),... ,(X

(1)
n+1−X(2)n+1),Y

(1)
n+2

> 0,

Y2, Y3, . . . , Yn+2 = const. (64)

where the symbols without upper indices refer to the het-
erogeneous system as a whole. The conditionY

(1)
i = const

(whenYi = const) indicates the absence of a phase transition
for the parameteri: entropies of phases, volume of phases
or the amount of a given substance in phases are constant.
The conditionX(1)i −X(2)i = const means the corresponding

phase transition and, in particular, whenX(1)i − X(2)i = 0,
the equilibrium of the phases with regard to the parameteri
(partial equilibrium). According to Eq. (64) from the com-
parison of the derivatives(
∂X1

∂Y1

)
Y
(1)
2 ,Y

(1)
3 ,... ,Y

(1)
n+2

>

(
∂X1

∂Y1

)
(X
(1)
i −X(2)i )=0,Y (1)n+2

> 0,

i = 2,3, . . . , n− 1, (65)

it follows that the derivative∂X1/∂Y1 when the composi-
tions of the phases are constant (lack of equilibrium) is al-
ways larger than when the equilibrium between the phases
is maintained. The inequality, Eq. (65), can be interpreted in
a wider way: if the process of establishing the equilibrium
between the phases relative to the parametersi is slower
than the process of changingX1 andY1 then the derivative
∂X1/∂Y1 has a larger value than at the moment equilibrium
is established. For example, for the partial pressure of com-
ponent 1 with regard to the relationship

µ1 = µ0
1(T )+ RT lnp1,

we obtain forT, P = const(
∂ lnp1

∂m1

)
m
(1)
2 ,m

(1)
3 ,...

>

(
∂ lnp1

∂m1

)equilibrium

> 0, (66)

i.e., on introducing a component into the system its par-
tial pressure increases, but then somewhat decreases in the
process of establishing the equilibrium with regard to all
the components. This result illustrates the possibility of us-
ing the criteria of stability ofequilibrium to characterise
thenon-equilibrium process. Analogous relationships can be
obtained for other parameters that are second derivatives of
thermodynamic potentials. For example, atP = const for a
two-phase multicomponent system(
∂S

∂T

)
P,µ

(1)
i =µ(2)i

>

(
∂S

∂T

)
P,m

(1)
i

> 0,

mi = m1,m2, . . . = const. (67)
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Since the heat capacity at constant pressure,CP , can be
expressed by the derivatives in Eq. (67)

CP = T
(
∂S

∂T

)
P

,

then the statement follows from Eq. (67), in particular: if
under the change of temperature of the system stable phase
equilibrium is not established (or has no time to establish)
then the heat capacity becomes lower than the equilibrium
heat capacity.

Of practical interest is the next limiting case when the
initial state of the system is a single-phase state, i.e.,

Y
(1)
1 = Y1, Y

(1)
2 = Y2, . . . , Y

(1)
n+2 = Yn+2,

but the second phase can appear when the state changes.
Then it follows from Eq. (65) that, e.g., the parameter
∂X1/∂Y1 in a metastable homogeneous state has a larger
value than in the corresponding stable two-phase state. The
difference between the derivatives in Eq. (65) has a finite
value [96]. It follows then that the transition from a homo-
geneous range to the inhomogeneous one is accompanied
by the jump in the value of∂X1/∂Y1. The latter conclusion
can be compared to some known results for configuration
effects and heat capacities [4,18,88].

The analogous differential thermodynamic inequalities for
the systems with chemical reactions also follow from the
stability criteria [99].

We will consider now several results of the application of
integral thermodynamic inequalities to vapour–liquid sys-
tems. We will pay attention to the one important aspect,
namely the evaluation (verification, calculation) of param-
eters of multicomponent systems from data on constituent
systems with less number of components. Condition (6) is
a result of combining two conditions of stability for the ad-
jacent phases [1,7].

(T ′′ − T ′)S′′ − (P ′′ − P ′)V ′′ +
n∑
i=1

(µ′′
i − µ′

i )m
′′
i > 0, (68)

(T ′′ − T ′)S′ − (P ′′ − P ′)V ′ +
n∑
i=1

(µ′′
i − µ′

i )m
′
i > 0, (69)

where the quantities with the indices (′) and (′′) are the
parameters of two infinitely close (adjacent) states. It can be
shown that for stable states Eqs. (6), (68) and (69) are valid
also for finite differences (states differing in any way). Some
consequences from this inequality can be used to verify and
correlate equilibrium data.

Let us change the sign in Eq. (6) (> for=). This equa-
tion will correspond to the border of the stability. We
consider now the connection between multicomponent
(n-components) systems and subsystems (k-components,
k < n). For calculations we must find the solution of
Eq. (68) or (69) with the equality sign. It gives the bound-
ary of possible values for a given thermodynamic variable

in T–P–mi co-ordinates. The sign of the inequality gives
the position of the region of possible values with respect to
this boundary. The calculated values are called the limiting
values of the equilibrium thermodynamic variables.

For ternary systems containing vapour and a few liq-
uid phases, the following inequalities may be deduced from
Eq. (68) [100,101]:

y2 ≤ exp

[
(x1 lnp1 + x2 lnp2)

12 − x12
1 ln

(
y1

y2

)
− lnP

]
,

T = const. (70)

y2 ≤ exp

[
T − T 12

RTT12
(x12

1 L
0
1 + x12

2 L
0
2)

+ (x1 ln y1 + x2 ln y2)
12 − x12

1 ln

(
y1

y2

)]
,

P = const. (71)

where we use symbolyi for the mole fraction of component
i in the ideal vapour phase,xi the same in homogeneous or
heterogeneous solution. The values with superscript 12 re-
fer to the binary subsystem 1–2; those without to the ternary
system. The same relationships hold fory1 and y3 (after
change of indices). We assume that any non-ideality of the
vapour may be neglected; otherwise appropriate corrections
must be made through the use of the second virial coeffi-
cients or association constants [102].

Eqs. (70) and (71) are evaluated using the data for the bi-
nary systems involved, and give the curves on a triangular
plot of the equilibrium compositions. These curves describe
the feasibility limits for the area of possible vapour compo-
sitions for a given pressureP or temperatureT.

For multicomponent systems, the relationships for vapour
composition have the following form [101,103]:

n−1∑
i=1

x′
i ln yi ≤

(
n−1∑
i=1

x′
i lnp

′
i

)
− lnP, T = const. (72)

n−1∑
i=1

x′
iRT ln yi ≤

n−1∑
i=1

x′
i

[
L′
i

T ′ (T − T ′)+ C′
Pi

×
(
T ln

(
T

T ′

)
+ T ′ − T

)
+ RT ln y′

]
,

P = const. (73)

whereCPi is the average value of the partial molar heat
capacity of componenti in the vapour within the temperature
interval [T, T′]; values with the symbol′ refer to subsystems
of the multicomponent system, those without the symbol
′ to the multicomponent system itself. These relationships
hold for all thek-component subsystems (k = n− 1, n− 2,
n− 3,. . . ).

For practical purposes Eq. (73) may be simplified. Terms
in Eq. (73) that includeCPi may be neglected;Li can be
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Fig. 17. Isotherms–isobars for vapour (curves A–C) and borders of the
possible compositions (lines of limiting compositions dotted lines a–c) in
chloroform(1)–ethanol(2)–hexane(3) (T = 228.15 K; A, a 600; B, b 680;
C, c 700 mm Hg; (a)) [105] and methanol(l)–cyclohexane(2)–acetone(3)
(T = 208.15 K; A, a 360; B, b 380; C, c 400 mm Hg; (b)) [104].

approximated byL0
i , the molar heat of vaporisation of the

pure componenti. Eq. (73) then takes the form:

n−1∑
i=1

x′
iRT ln yi ≤

n−1∑
i=1

x′
i

[
L0
i

T ′ (T − T ′)+ RT ln y′
i

]
. (74)

For the case wheren = 3 Eq. (71) follows from Eq. (74).
In Fig. 17, the results of calculations for the systems

chloroform–ethanol–hexane and methanol–cyclohexane–
acetone are compared to experimental data [104,105]. The
compositions for this and all the remaining figures are
expressed in mole fractions.

For quaternary systems the following form of Eq. (74)
may be used for practical calculations:

3∑
i=1

x′
iRT ln yi ≤

3∑
i=1

x′
i

[
L0
i

T ′ (T − T ′)+ RT ln y′
i

]
,

P = const, (75)

or Eq. (72) forn = 4 (T = const):

3∑
i=1

x′
i ln yi ≤

(
3∑
i=1

x′
i lnp

′
i

)
− lnP. (76)

The solution ofequalities set out in Eqs. (75) and (76)
can be expressed in the forms:yi = yi (T, yi /yk, yj ) and
yi = yi(P, yi /yk, yj ), or equivalent forms. The values
yi (i �= k �= j ; i, k, j = 1, 2, 3 or 4) also depend on
binary and pure component data. As a results of calcu-
lations using theequalities of Eqs. (75) or (76) one can

Fig. 18. Isotherms–isobars of vapour (curves A–C) and borders of the
possible compositions (lines of limiting compositions dotted lines a–c)
in the system chloroform(1)–ethanol(2)–acetone(3)–hexane(4) at 228.15 K
for the plates of the concentration tetrahedronyi = const; (I)y3 = 0.25,
(II) y1 = 0.25. Numbers in the apexes of the triangles correspond to the
componentsk with concentrationyk = 0.75. Pressures are in mm Hg.

obtain the hyper-surfaces of limiting values for the con-
centration tetrahedron. The results of calculations for the
quaternary system chloroform–ethanol–acetone–hexane in
comparison with experimental data [106] at 228.15 K are
shown in Fig. 18 for the planesyi = constant in the con-
centration tetrahedron. Curves A–C in Fig. 18 correspond
to projections of isotherm–isobars of ideal equilibrium
vapour on these planes (in order of rising pressure). The
course of lines a–c (lines of limiting values for vapour
composition at these pressures) corresponds toinequality
(76).

Another kind of results holds fortemperature and vapour
pressure limiting values. For constant pressure the following
relationship must hold [103]:

1

T
≤ 1

T ′ − R
∑k
i=1x

′
i ln(yi/y′

i )∑k
i=1x

′
iL

0
i

, k < n, (77)

where the primed values are related to thek-component sub-
systems of ann-component multicomponent system. This
inequality determines the minimum possible boiling tem-
perature of a multicomponent solution. Eq. (77) is set out
for practical purposes and is approximate. The strict equa-
tion includes partial molar heats of vaporisation and par-
tial molar heat capacities of the subsystems’ components.
Vapour-phase non-ideality, if necessary, can be accounted
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for using the second virial coefficients or association con-
stants as appropriate.

For the equilibrium pressure in a multicomponent system
[103]:

P ≤ P ′ exp

(
k∑
i=1

x′
i ln

(
y′
i

yi

))
, T = const. (78)

Limiting values of temperature, pressure and other thermo-
dynamic variables can be calculated both for a particular
composition, and for overalln-component systems. Limiting
values of temperature,T ∗, can be determined by the substi-
tution of data for all the subsystems into the right-hand side
of the equality, Eq. (77). The minimum of these values ofT
for a given composition for then-component system gives
the limiting value ofT ∗ of T for this composition. A set of
T ∗ values for differing compositions of then-component
system allows the limiting (i.e., minimum) value of the
boiling temperature for the overall system to be obtained.

Eq. (77) was used for a priori estimation of the limiting
boiling temperature values in 23 ternary systems [107]. For
these calculations were used binary vapour–liquid equi-
librium data [108] and surfaces of the limiting values on
the concentration triangles were obtained. These surfaces
exhibit minima in temperature, which, while not corre-
sponding to azeotropic points, may be close to them. Some
of these points and experimental azeotropic points [109]
are shown in Fig. 19.

In the same way some predictions for azeotropic com-
positions also can be obtained. The limiting values of
compositions for ternary homo- and heteroazeotropes were
calculated from Eqs. (70) and (71) from pressure or boiling
temperature data. These calculations permit the estimation
a priori of real azeotrope compositions. But there is another
possible use of thermodynamic inequalities in these cases,
especially for heteroazeotropes. The results of calculations
for some heteroazeotropes are shown in Fig. 20, together
with experimental composition data [109] at the same con-
ditions. Here the bounded areas around the azeotropic points

Fig. 19. Azeotropic points (�) and minimum points on the surface of limit-
ing boiling temperatures in some ternary systems at atmospheric pressure.
(1) Ethanol(l)–hexane(2)–chloroform(3) (homoazeotrope); (2) acetone(1)–
methanol(2)–cyclohexane(3) (homoazeotrope); (3) ethanol(l)–chloroform
(2)–water(3) (heteroazeotropc); (4) heptane(l)–1-butanol(2)–water(3)
(heteroazeotrope); (5) nonane(l)–1-butanol(2)–water(3) (heteroazeotrope).

Fig. 20. Azeotropic points (�) and results of calculation of limiting
azeotropic concentration values (curves) for systems water, A1 (l)–
component (2)–component (3). (a) 1: A1–chloroform–ethanol; 2: A1–
tetrachloromethane–1-propanol; 3: A1–tetrachloromethane–allyl alcohol;
4: A1–chloroform–methanol; 5: A1–chloroform–allyl alcohol; 6:
A1–ethanol–cyclohexane; 7: A1–ethanol–n-hexane; 8: A1–1-propanol–
benzene. (b) 1: A1–ethanol–heptane; 2: A1–1-propanol–toluene;
3: A1–ethanol–benzene; 4: A1–l-butanol–octane; 5: A1–1-butanol–
chlorobenzene; 6: A1–1-butanol–n-heptane; 7: A1–2-propanol–cyclo-
hexane; 8: A1–1-propanol–n-hexane.

are the regions of possible compositions, their boundaries
being the lines giving the limiting values of composition.

Good agreement between the limiting values and the ex-
perimental data is evident. For heteroazeotropes the results
of the computations of the limiting values are for practical
purposes the calculation of actual azeotropic compositions,
since the size of the area of possible compositions corre-
sponds approximately to the usual experimental errors.

For systems with chemical reactions, limitations on the
isotherms–isobars (as well as the isotherms–isobars them-
selves) can be set out in a respective concentration space
(see Section 4). Fig. 21 presents the illustration of the
results of such an evaluation for the system water–propyl
acetate–acetic acid–propyl alcohol at 318.5 K [31].

Computations on the basis of thermodynamic inequal-
ities (stability conditions) show good agreement between
limiting values and the experimental data. For ternary het-
eroazeotropes results that give directly heteroazeotrope com-
positions and boiling temperatures (and so vapour pressures)
were obtained. Similar equations for other equilibrium ther-
modynamic variables (i.e., Gibbs energy) have also been
deduced [110]. Such calculations may well be of practical
significance for process synthesis.

It may well be possible to use such methods for the direct
thermodynamic calculation of vapour–liquid equilibria. For
instant, the good agreement shown in Fig. 17 suggests that
it may be possible to construct real isotherm–isobars for the



24 A.M. Toikka, J.D. Jenkins / Chemical Engineering Journal 89 (2002) 1–27

Fig. 21. Thermodynamic limitation (dotted lines a–c) for the location of the
point of the maximum pressure and for the location of isotherms–isobars
for the vapour on the chemical equilibrium surface (the point A and
curves B, C, respectively) in acetic acid(l)–propanol(2)–water(3)–propyl
acetate(4) (318.5 K) calculated from the data on binary subsystems without
chemical reactions [31]. (A) 104, (B) 100, (C) 90 mm Hg.

vapour phase from the lines of limiting values with the use
of some additional factors.

9. Conclusions

This review includes thermodynamic results related to the
studies of vapour–liquid equilibria that seem to the authors
to be important and significant. The review does not pretend
to be complete; such a review would go beyond the limits of
a journal paper. In particular, we have not reviewed works
dealing with the calculation of thermodynamic properties on
the basis of models and empirical equations.

The most important aspect of the thermodynamic methods
is their universality and applicability to systems of differ-
ent physico-chemical types. Limitations of thermodynamic
methods in their application to studies of vapour–liquid
equilibrium are due to the shortcomings of the existing mod-
els that describe this equilibrium. We think that modelling
and calculations on the basis of this approach must develop
together with the development of the thermodynamic meth-
ods. First, within the framework of the thermodynamic the-
ory the optimal approach to the calculations can be selected.
Second, thermodynamics enables one to control the correct-
ness of a model or an empirical relationship. Third, the com-
bination of the model and thermodynamic approaches can
stimulate the development of thermodynamic theory on the
basis of empirical rules that generalise the experimental data.

In this review we have considered both classical ther-
modynamic results, together with methods of analysing
vapour–liquid equilibria, and the relatively new methods
based on the use of criteria of stability of the equilibrium.
One of the possible prospective developments of the theory
is in the use of the results of irreversible thermodynamics.

In particular, on the basis of the linear and non-linear
relationships of irreversible thermodynamics one can per-
form calculations for the changes of parameters under
disturbances in the equilibrium, which would enable one
to move from the qualitative relationships of the theory of
stability to the quantitative ones.
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